Metal-diboride nanotubes as high-capacity hydrogen storage media.

نویسندگان

  • Sheng Meng
  • Efthimios Kaxiras
  • Zhenyu Zhang
چکیده

We investigate the potential for hydrogen storage of a new class of nanomaterials, metal-diboride nanotubes. These materials have the merits of a high density of binding sites on the tubular surfaces without the adverse effects of metal clustering. Using the TiB2 (8,0) and (5,5) nanotubes as prototype examples, we show through first-principles calculations that each Ti atom can host two intact H2 units, leading to a retrievable hydrogen storage capacity of 5.5 wt %. Most strikingly, the binding energies fall in the desirable range of 0.2-0.6 eV per H2 molecule, endowing these structures with the potential for room-temperature, near-ambient-pressure applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts

Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...

متن کامل

Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage

Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of ...

متن کامل

A novel candidate for hydrogen storage: Ca-decorated zigzag C3N nanotube

In order to search high-capacity hydrogen storage media, first-principles calculations were performed. Ca-decorated on perfect and defective C3N nanotube as a new adsorbent for H2 molecules were studied. It was found that the Ca-decorated on defective nanotube can adsorb up to eight H2 molecules with the average binding energy of 0.11 eV/H2. Interaction of Ca atom with the nanotubes and H2 mole...

متن کامل

Hydrogen storage in carbon nanotubes with Ni nanoparticles by electrochemical

In this paper, the electrochemical hydrogen storage in nanocomposite materials was studied. Multi-Walled Carbon Nanotubes (MWCNTs) electrode was prepared by mixing with special composite. The optimum ratio of MWCNTs was estimated 30-70% (w/w) in the composite material. MWCNTs were synthesized by Chemical vapor deposition (CVD). The nanocomposite was homogenized by microwave. Cyclic voltammetry ...

متن کامل

Hydrogen storage in carbon nanotubes with Ni nanoparticles by electrochemical

In this paper, the electrochemical hydrogen storage in nanocomposite materials was studied. Multi-Walled Carbon Nanotubes (MWCNTs) electrode was prepared by mixing with special composite. The optimum ratio of MWCNTs was estimated 30-70% (w/w) in the composite material. MWCNTs were synthesized by Chemical vapor deposition (CVD). The nanocomposite was homogenized by microwave. Cyclic voltammetry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2007